
ToLHnet
Tree or Linear Hopping network

DII – Università Politecnica delle Marche

September 9, 2014

Contents

1 Introduction 3
1.1 Network Topology . 3

1.1.1 Logical Topology (Tree) . 5
1.2 Network Layer Model . 6

1.2.1 Physical and Data Link Layer 7
1.2.2 Network Layer . 7
1.2.3 Presentation Layer . 7
1.2.4 Application Layer . 8

2 Network Layer 9
2.1 Addressing . 9
2.2 Network Packet . 11

2.2.1 Addressing modes . 11
2.3 Routing tables . 12

2.3.1 Mask-Based Rules . 12
2.3.2 Span-Based Rules . 13

2.4 Network Configuration . 13
2.5 Packet Processing and Routing . 18

2.5.1 Sequence Numbers and Duplicated Packets 18
2.5.2 Packet Processing Algorithm 19

2.6 Commands . 21
2.6.1 ACK Code . 22
2.6.2 NACK Code . 22
2.6.3 CONFIG Code . 22
2.6.4 PING Code . 24
2.6.5 TRACE Code . 24

2.7 Extended Network Layer (Master Node) 25
2.7.1 Network Formation . 25
2.7.2 Packet Loss . 26
2.7.3 Sequence Number Generation 26

3 Presentation Layer 27

1

CONTENTS

4 Application Layer 28
4.1 Register Address Format . 29
4.2 Commands . 30

4.2.1 GET Code . 30
4.2.2 SET Code . 30
4.2.3 MSG Code . 30

2

Chapter 1

Introduction

ToLHnet (which stands for “tree or linear hopping network”) is a powerful yet simple
networking protocol developed in order to support the creation of mixed networks, em-
ploying wired and wireless connections over different media among thousands of nodes.
It is based on tree routing, with special care to support the degenerate case of linear
routing, to keep implementation on nodes simple and protocol overhead low.

The protocol has been developed with the main goal of keeping both the complexity
of the firmware on the nodes, and the overhead introduced by the network layer on the
transmission, as low as possible. Because of this, the protocol has been designed so as
to allow a strongly asymmetrical implementation, moving most of the complexity out of
the standard nodes and into a single special node that will be the master controller of
the network.

This master controller shall have larger computing and memory resources than those
required by the other nodes (it will typically be implemented on a single-board-computer
equipped with a standard operating system) and will take care of computing routing
tables, assigning addresses, and configuring the network. It can also act as a gateway
towards other networks.

The most important features of ToLHnet are:

• seamlessly support of wired or wireless media

• relatively large address space: about 60000 nodes

• low network overhead (typically 4 bytes, no need for MAC-layer addressing, pay-
loads up to 240 bytes)

• low complexity of node firmware (<12 kB on one of the tested platforms)

1.1 Network Topology
The ToLHnet network can span multiple physical transmission media, either by means
of wired (point-to-point or multidrop) or wireless connections. The network layer, as
described in this document, abstracts from the details of actual physical transmission,

3

1.1. NETWORK TOPOLOGY

0

4

3

1

6 7 8

9

2

5

P
L
2

RF2

SL1

RF1

P
L
1

SL2

Figure 1.1: A simple example of node positions and connection highlighting the
physical network topology.

relying only on basic services provided by the underlying layers, like the basic transmission
or reception of data frames.

It’s important to distinguish between the physical network topology, that can have
arbitrary complexity, from the logical one used to route data packets, that is a tree
topology with the master node at its root.

An example of physical topology is shown in Fig. 1.1, where several nodes are con-
nected through different physical media: two point-to-point serial links (“SL1” and
“SL2”), two separated power-line buses (“PL1” and “PL2”) and two wireless connec-
tions (“RF1” and “RF2”), the latter being separated by operating on different frequencies
or merely by physical factors.

We can define a “physical broadcast domain” (PBD) as a set of nodes that share
the same transmission medium and that can all directly reach each other, e.g., a set of
nodes connected to the same wired bus, or a set of wireless nodes close together enough
so as to allow direct communication. Generally speaking, a node can belong to many
PBDs, and different PBDs can overlap one another.

In the shown example, one can identify two wired PBDs (“PL1” and “PL2”) and two
wireless PBDs (“RF1” and “RF2”); these domains overlap in several ways, for example
node 6 belongs to “RF1” and “RF2”, while node 7 belongs to “RF2” and “PL2”.

A node belonging to more than one PBD can act as a router and route packets
to other connected nodes. As explained in this document, any node can be a router,
without the need of a special configuration. An end-node is just a special case of a node
that does not route data to any other node.

4

1.1. NETWORK TOPOLOGY

0

1

42 3 5 6

87

9

SL1

PL1SL2 RF1 RF1PL1

RF2 RF2

PL2

Figure 1.2: A simple example of a logical tree topology.

1.1.1 Logical Topology (Tree)

To simplify the protocol implementation on the nodes, ToLHnet uses a logical topology
based on a tree, extracted from the physical one, where data packets travel across the
tree branches only, intermediate nodes act as routers and only one packet is transmitted
on the whole tree at a given time.

Building the logical tree starts from the physical topology; the latter can be formally
described by an undirected graph, and weights can be associated to its edges to take into
account the different capacity, delay, cost (energy consumption) and reliability (related
to the distance) of each link. Using well-known algorithms (e.g. Dijkstra’s), it is possible
to extract a tree from this graph, optimizing for the relevant parameters, having its root
at the node 0 (master node).

An example of such a tree, derived from the previous physical topology, is shown in
Fig. 1.2.

As said, the master node (node 0) is typically a different device than the other
nodes, with greater computational capabilities; in our example the master node is con-
nected with a point-to-point connection to one of the other nodes (node 1), but this
configuration is not mandatory.

The master node, besides processing data packets like the other nodes, must perform

5

1.2. NETWORK LAYER MODEL

additional tasks, like:

• compute the logical tree from the physical topology, or store a pre-computed tree
structure

• build the routing tables of all the nodes, according to the tree structure

• configure the nodes during the network setup, assigning their addresses and routing
tables

• manage the network errors: lost packets, timeout computation and management,
connection loss between blocks of nodes, etc.

• interact with the user or other interface systems, and perform the more complex
application’s tasks

See Sec. 2.7 for details on some of the additional functions provided by the master node.
As explained later, every node receiving a packet, explicitly directed to it or to

be routed to another node, decides, according to its routing rules, if it has to accept
and process the packet or discard it. The latter case can be needed because, due
to different broadcast domains (PBDs), whose reliability can change, a packet can be
received through a link not belonging to the tree (side-edge reception), as a side-effect
of a transmission directed to another node in the routing chain, even if the packet is
actually destined to the node itself. In this case the packet must be ignored, to not
generate collisions by trying to route it, or reply to it, while other nodes are transmitting
as well. The node must instead wait until it receives the same packet at the right time
and/or through the proper link.

This check is made possible by several protocol features:

• every node is assigned, during the initial configuration, a “depth” value, that is
the number of needed hops to reach the node from the master node

• every data packet contains information about the number of hops performed up
to a given moment, updated at every retransmission.

Each node can therefore compare the hop number of a packet, together with other
information such as the packet direction, to its own configuration and decide if the
packet is actually directed to it.

1.2 Network Layer Model
The ToLHnet protocol can be conceptually organized in the layers shown in Fig. 1.3,
compared to the OSI protocol model.

6

1.2. NETWORK LAYER MODEL

OSI model ToLHnet

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

Application

Presentation

Network

Data link

Physical

Figure 1.3: ToLHnet layers.

1.2.1 Physical and Data Link Layer

As said, the ToLHnet protocol is independent from the physical communication media,
allowing the integration of different media in an uniform way. To this purpose, the
functions that the data link layer must provide are minimal, including the transmission
of data frames, notification of data reception and of possible errors.

Each specific implementation will therefore provide a custom version for this layer.
Nonetheless, to ensure interoperability among nodes using the same physical transmis-
sion standard, this document provides a series of reference implementations for some
wired or wireless communication channels. See appendix ... for details.

1.2.2 Network Layer

The network layer is the central part of the ToLHnet standard. As said, there are two
versions of the network stack:

• standard version, available in all the nodes of a network, typically embedded sys-
tems with limited resources; this version performs the basic tasks of packet routing

• extended version, implemented in the master node, performing the tasks of the
standard version together with the additional functions of the master (see Sec. 2.7)

See Sec. 2 for details.

1.2.3 Presentation Layer

This layer implements a higher-level interface with the network layer, interpreting a
series of more user-friendly commands and translating them into one or more network
communications.

This layer is implemented by the master node. See Sec. 3 for details.

7

1.2. NETWORK LAYER MODEL

1.2.4 Application Layer

The application layer provides the services typical of the specific application. As such,
its implementation is independent from the ToLHnet standard.

Nonetheless, given that the information exchanged between the application layer and
the lower ones is partly dependent on the network packet format, the ToLHnet standard
defines a protocol for the application layer, logically organizing the application in a
set of registers, readable and writable through dedicated commands, with side effects
depending on the application. It also provides a mean to send messages, from a generic
node, indicating an event not related to any request.

Following this implementation, an (even if limited) compatibility can be obtained
among different applications using the ToLHnet standard. Future versions of this stan-
dard might also define a semantics for the registers of the application layers, and some
means of “discovery” of the available services. That will allow the implementation of
fully-compliant applications, ensuring a high level of interoperability with other systems,
together with maximum flexibility for those systems.

See Sec. 4 for details.

8

Chapter 2

Network Layer

As said, the ToLHnet network is logically organized as a tree (see example Fig. 1.2).
Data travel across the network in form of packets, described in this chapter, following
the branches of the tree.

Typically (?) a communication only happens from the master node to a generic
node, and from a node to the master node, the latter only as a reply to a request from
the master.

Communication is unicast: a data packet is addressed to a single node identified by
a unique address.

2.1 Addressing
There are two kind of addresses used in the ToLHnet protocol:

Hardware Address
48 bits long, uniquely and permanently identifies each node. Typically programmed
during production on a non-volatile memory, or inferred from unique identifiers of
the underlying hardware. In the text it’s also referred to as “MAC address” in
conformity with network terminology, even if in this case it has nothing to do with
a MAC layer. This kind of address is used during the initial configuration only, in
order to assign a shorter network address to the node.

Network Address
16 bits long, it’s assigned by the master node to each other node during network
configuration, and it’s then used for all the following communications. The address
0 is reserved to the master node.

Each network packet (see Sec. 2.2) can include one or more of such addresses, among
the source network address, the destination network address and the destination MAC
address.

9

2.1. ADDRESSING

field size (bits) description

T 1 Target: 0 if the packet is to be processed by the network
layer, 1 if it’s a message for the application layer.

CODE 3 Type of command or message carried by the packet. Rep-
resents the semantics of the packet. See Sec. 2.6.

SEQ 4 Sequence number of the packet, used to discard duplicated
packets. See Sec 2.5.

AM 2 Addressing mode. Specifies which addresses are present in
the header. See Sec. 2.2.1 and Table 2.2.

D 1 Direction: 0 if the packet is directed towards the tree leaves,
1 if directed towards the tree root.

HOPS 5 Current routing depth of the packet, that is the distance, in
number of hops, from the master node to the current node
handling the packet1. This field is updated by every router
when forwarding the packet (see Sec 2.5). This field can
handle 31 depth levels; if it’s saturated (11111), the optional
field “HOPS_EXTENSION” is used instead, to extend the
maximum depth2 to about 65000.

HOPS_EXTENSION 16 Optional, present if the “HOPS” field is 11111.

SRC_ADDRESS 16 Optional (Sec. 2.2.1). Network address of the source node.
If omitted it is 0 (packet coming from the master node).

DST_ADDRESS 16 Optional (Sec. 2.2.1). Network address of the destination
node. If omitted it is 0 (packet directed to the master node).

MAC_ADDRESS 48 Optional (Sec. 2.2.1). Hardware address of the destination
node, used during node configuration only.

DEPTH 16 Optional (Sec. 2.2.1). Routing depth of the destination
node, used during node configuration only, together with
“MAC_ADDRESS” field.

payload var. packet payload (0–240 bytes)

Table 2.1: Fields in network packet.

10

2.2. NETWORK PACKET

(0−240 bytes)

payload

HOPSDAMSEQCODET

SRC ADDRESS

DST ADDRESS

MAC ADDRESS [31:16]

DEPTH

MAC ADDRESS [15:0]

MAC ADDRESS [47:32]

HOPS EXTENSION

Figure 2.1: Network-level packet structure.

2.2 Network Packet
Fig. 2.1 shows the structure of the network packet. Gray fields are optional, their
presence depends on the value of other fields.

Tab. 2.1 lists the meaning of each field in the network packet.
It can be seen that, in the common case in which one of the endpoints of the

communication is the master node, only one network address need be specified, and if
there are less than 32 hops in the tree, the header size is just 4 bytes.

2.2.1 Addressing modes

Tab. 2.2 shows the possible combinations of addresses included in a packet, according
to the content of “AM” field:

SRC
Source network address specified; destination = 0 (master node).

SRC + DST
Source and destination network address specified; communication between two
arbitrary nodes.

DST
Destination network address specified; source = 0 (master node).

1In a network like the one depicted in the previous example (Fig. 1.2) where the master node is not
part of the network itself, it is conventional to assign a depth of 0 to the first node attached to the
master node, that is the node 1 in the example, and not to the master node itself. Similarly, the number
of hops would be 0 (not 1) when reaching the node 1.

2This allows ToLHnet to scale well to the special case of a linear network, e.g. a long string of nodes
where each node can transmit only to the previous and following one.

11

2.3. ROUTING TABLES

AM fields present

00 SRC
01 SRC + DST
10 DST
11 DST + MAC/DEPTH

Table 2.2: Addressing mode field description. These two bits specifies which addresses
are present in the header.

DST + MAC/DEPTH
Destination MAC address, network address and depth specified; used during initial
configuration only.

2.3 Routing tables
All the nodes in the network possess a network address, a depth level in the tree, and a
routing table, all of them assigned by the master node during the initial configuration.
These parameters are used to decide how to process incoming packets.

When a node accepts a packet, it must find a matching rule in the routing table,
as described below, stating what to do with the packet, whether accepting it as the
packet’s recipient or route it to another node, and in the latter case what’s the interface
to route the packet through.

The protocol is especially designed to keep the routing table as small as possible,
often in the order of just one entry per physical interface.

There is no difference between an end-node (tree leave) and a router node, except
that an end-node will have the smallest possible routing table, with one rule matching
its own network address for packets to be accepted locally, and another catch-all rule
for transmitting packets to its parent (see Sec. 2.4).

Each entry (rule) in the routing table contains a span of network addresses to match,
a direction value (+1 for the routes towards leaves, -1 for the route towards the parent,
0 for the local node address) and an interface specification stating what transmission
medium to use to reach the addresses specified by the span.

Routing rules are stored in each device in implementation-specific format. Hereafter
they will be written in a symbolic format, closely related to their actual contents.

There are two kind of rules: mask-based rules and span-based rules. See the “CON-
FIG” command (Sec. 2.6.3) for their exact representation in the context of network
configuration.

2.3.1 Mask-Based Rules

A mask-based routing rule is formatted as follows:

12

2.4. NETWORK CONFIGURATION

XXXX/L (MMMM) V II

The XXXX field identifies the network address span of destination, as explained below.
This kind of rule uses a 16-bit mask (MMMM) having a certain number of most significant
bits set to 1, and the remaining bits set to 0. The length field L (0–15) indicates the
number of bits in the mask set to 1, so the mask is not explicitly assigned, but derived
from L. For example, a length of 4 indicates a mask with value 0xF000.

In order to match such a rule, the actual destination address of a packet is first
logically ANDed with this mask and then compared to the destination field XXXX.

This kind of rule allows to partition a network in “subnetworks”, much like used, for
example, in the IP protocol.

When searching for a matching rule, the table must be searched in descending order
by the mask length, so that a rule with a longer mask will be matched preferentially.

Once a rule is matched, the II field indicates the transmission interface to which the
packet must be routed. II must be lesser than 0x7F, so that it’s usual to denote the
interfaces with ASCII values of printable characters. Values can be assigned arbitrarily,
but must consistently identify each interface through the whole network. The special
value 0 is for the local interface, that is a packet to be accepted locally. The value
0x7F has special meaning (See the “CONFIG” command, Sec. 2.6.3). Other values are
undefined.

Lastly, the V field is the hop number to be added to the packet’s own hop number
(“HOPS” field) before further routing: +1 for the routes towards leaves, -1 for the route
towards the parent, 0 for local acceptation.

2.3.2 Span-Based Rules

A span-based routing rule is formatted as follows:

XXXX-YYYY V II

The XXXX and YYYY fields identify a network address interval to compare the packet
destination address with (endpoints included). In case of a single address, the rule can
be abbreviated as:

XXXX V II

The V and II fields have the same meaning as in the previous case.
In order to be sorted together with mask-based rules, to choose a preferential rule

among several matching ones, provided that mask-based rules are searched in descending
order by the mask length, for span-based rules a conventional value of 15 is assumed for
the mask length when searching the table for a matching rule.

2.4 Network Configuration
During the initial network setup, the master node must configure all the network nodes
by assigning them:

13

2.4. NETWORK CONFIGURATION

• their network address

• their depth in the tree

• their routing table, if any

The configuration is performed by sending “CONFIG” packets (see Sec. 2.6.3) to
every node in the network.

Given that a node initially does not know such parameters, the master node must first
address the nodes by mean of their MAC address, using network packets with addressing
mode “DST + MAC/DEPTH”. Other configuration commands can then be sent to the
same node using the normal addressing (network address).

A node receiving a “CONFIG” packet with “DST + MAC/DEPTH” address, decides
that it is the actual recipient of the command using the MAC address and the number of
hops of the packet, both specified in the packet’s header itself (see Sec. 2.5). Reception
of such a packet means the start of a configuration process, and the node resets its
network parameters as follows:

• stores the packet destination network address as its network address

• stores the packet “depth” value as its depth in the tree

• resets its routing table and populates it as directed by the records in the command’s
payload (if any).

“CONFIG” packets received subsequently with another addressing mode (using the
network address and not the MAC address) indicate routing rules that the node must
add, delete or modify, but without resetting the previous information. See the description
of “CONFIG” command (Sec. 2.6.3) for details.

When a node resets its routing table upon receiving the first configuration command,
in order to function properly the node must set two additional implicit rules to its table;
such rules are not explicitly included in the configuration sent by the master node.

The first implicit rule is for packets to be accepted locally, and can be coded as
follows:

XXXX 0 00

where XXXX is the network address of the node, as it’s being assigned by the configuration
command, and the value 00 for the interface indicates the local acceptation. This is the
rule that will be matched by packets directed to the node itself, and will typically be the
the only rule with null direction value.

The second implicit rule is for packets to be routed to the parent node, and can be
coded as follows:

0000/0 (0000) -1 II

14

2.4. NETWORK CONFIGURATION

0

1

42 3 5 6

87

9

SL1

PL1SL2 RF1 RF1PL1

RF2 RF2

PL2

Figure 2.2: A simple example of a logical tree topology.

where II is the interface from which the configuration command has been received,
identifying the connection with the parent node. This is a last-resort, catch-all rule
(rules are searched in descending order of mask length), and it’s matched for packets
whose destination address is not known by the node as belonging to its sub-tree, and so
the node does not know how to route them to destination. This can be a parent node
or any node in another portion of the tree. The rule states that such a packet must be
routed to the parent node, which in turn may have the destination node in its sub-tree
or can decide to route it backwards again. Note that this rule also matches the case of
a packet directed to the master node (address 0). Also note that typically this will be
the only rule with negative direction.

It can be seen that the master node needs to configure the nodes with rules having
“+1” direction only, given that the other two cases are covered by the implicit rules.
Such positive-direction rules tell a node which are its child nodes, therefore stating the
tree topology, and by which interfaces to reach them.

Given that a node can not route packets to its child nodes before being configured,
the master node shall first send the “CONFIG” command to its direct child nodes, then
to nodes at the subsequent depth layer, and so on.

The master node can dynamically compute the network configuration, and therefore
the routing tables of the nodes, or use a pre-computed configuration (see Sec. 2.7).

As an example, the configuration that the master node would compute for the
network in Fig. 1.2, reported here as Fig. 2.2, will be shown. The numbers associated
to nodes indicate their network addresses. Let’s assume for simplicity that the nodes’

15

2.4. NETWORK CONFIGURATION

MAC addresses only differ in their last hexadecimal digit, in its turn corresponding to
the node’s network address.

Conventionally, in a network like the one in the example, where the master node is
point-to-point connected to another network node, the depth value 0 is assigned to the
latter node (node 1 in the example), and not to the master. The hop number in packets
will also reflect this, so that a packet will have a 0 hop number when reaching the node
with 0 depth. This allows the saving of a depth level in the packet header, and the
master can be reached anyway by mean of its special address 0. Care must be taken to
not decrement the hop count of a packet if it’s already 0.

Therefore, in the example network, node 1 has depth 0, nodes 2 through 6 have
depth 1, nodes 7 and 8 have depth 2 and node 9 has depth 3.

A further prerequisite is the mapping of the several physical interfaces to a unique
code (“II” field in routing rules). Let’s choose the following:

’A’ serial link SL1

’B’ serial link SL2

’C’ radio domain RF1

’D’ power-line bus PL1

’E’ radio domain RF2

’F’ power-line bus PL2

With these assumptions, the configuration for the example network can be written
as follows, where nodes are identified by their fictitious MAC address:

• node XXXXXXXXXXX1

depth 0000
network address 0001
routing table

0002 +1 ’B’
0003 +1 ’C’
0004-0005 +1 ’D’
0006 +1 ’C’

• node XXXXXXXXXXX2

depth 0001
network address 0002
routing table

16

2.4. NETWORK CONFIGURATION

—

• node XXXXXXXXXXX3

depth 0001
network address 0003
routing table

—

• node XXXXXXXXXXX4

depth 0001
network address 0004
routing table

—

• node XXXXXXXXXXX5

depth 0001
network address 0005
routing table

—

• node XXXXXXXXXXX6

depth 0001
network address 0006
routing table

0007-0008 +1 ’E’

• node XXXXXXXXXXX7

depth 0002
network address 0007
routing table

0009 +1 ’F’

17

2.5. PACKET PROCESSING AND ROUTING

• node XXXXXXXXXXX8

depth 0002
network address 0008
routing table

—

• node XXXXXXXXXXX9

depth 0003
network address 0009
routing table

—

2.5 Packet Processing and Routing
As said, a node receiving a packet on any of its configured interfaces decides, according
to its own depth, to its routing table and to the packet header’s fields, if it must accept
the packet as its recipient, route it for another node, or discard it.

The algorithm used by the ToLHnet protocol and hereafter described, ensures that
only one packet is transmitted across the network at a given time, and only through
the actual tree branches, discarding side-edge-coming packets. It can be seen that this
algorithm is intrinsically collision-free.

2.5.1 Sequence Numbers and Duplicated Packets

The sequence number of a packet is used to detect duplicated packet transmissions, like
a node retransmitting the same command/message to the same node, possibly because
the first reply to the source had been lost. The implementation must track the sequence
number of the last seen incoming packet for each peer in the communication, according
to the hardware resources available on each device. Every node can store the sequence
number received within the last packet only, or by more than one source address if it has
the resources to do so. If not, stored sequence numbers must time out after a while to
free storage and allow communication with other peers to happen. In the typical scenario
of a node that receives packets from the master node only, or that communicates with a
limited number or peers, this task can be implemented with very little usage of hardware
resources.

A node transmitting a packet that is not a reply to another packet must generate
a suitable sequence number, i.e., a number different from the last one used in the
communication between the same two nodes, with a more or less sophisticated algorithm

18

2.5. PACKET PROCESSING AND ROUTING

(the simplest one being using consecutive numbers, but care must be taken to prevent
the possibility of a sequence number collision due to field overflow). Communications
are typically originated by the master node, whose network layer can implement more
optimized algorithms for this task (see Sec. 2.7).

In contrast, the sequence number of a packet sent as a reply to another packet must
be the same as the one in the received packet.

The distinction between a newly generated packet and a reply to a previous command
is trivial in the case of commands processed by the network layer (T=0). For transmis-
sions originated upon request by the application layer, the network layer identifies the
following two cases:

• if the code of the packet to be transmitted is “ACK” or “NACK”, the packet
is meant to be a reply to a command received by the application layer, and the
network layer uses the same sequence number as the last received packet for the
outgoing packet

• otherwise the packet is meant to be a new request, and the network layer generates
a new sequence number for the outgoing packet

In addition, a node must store the last packet it sent (or more than one). In the case
of packets destined to the application layer (T=1), when detecting a retransmission of
the same command from the same source node:

• if a packet was previously sent to the same node with the same sequence number,
thus as a reply from the application layer to the command being re-received, the
node must reply with the same packet sent when the command was first received

• otherwise the packet did not generate a reply, so the mode must ignore it again

Both the two cases must happen without notifying the upper layer of the duplicates
reception and/or reply. This is to avoid the undesirable multiple execution of a command
at the application layer, with side effects not predictable by the network layer.

In contrast, commands for the network layer (T=0) must not be checked for du-
plicates, nor a reply must be re-sent automatically without executing the command.
Commands directed to the network layer must be implemented so that the execution
of the same command more than once does not have a different effect than a single
execution. The rationale is to avoid potential network deadlocks due to nodes that do
not execute configuration commands issued by the master because of a mismatch in the
sequence number management between the two nodes.

2.5.2 Packet Processing Algorithm

The detailed algorithm for the processing of an incoming packet is conceptually described
below. All the cases in which a packet is discarded are part of the strategy to ignore the
packets received through side-edge channels, as already explained.

19

2.5. PACKET PROCESSING AND ROUTING

1. if the received packet contains the destination MAC address and the “depth” field,
and the MAC address matches the node’s MAC address:

(a) if the hop number of the packet equals the depth attribute of the packet
itself3: accept the packet locally (go to (10))

(b) else discard the packet and stop

2. if the hop number of the packet does not equal the node’s depth: discard the
packet and stop

3. check the packet input path by finding the matching routing rule for the source
address; this rule can have negative or positive direction, if the packet comes
from the parent node or a child node, respectively. If the rule does not exist or
its specified interface is different than the one from which the packet has been
received, discard the packet and stop

4. check the packet output path by finding the matching routing rule for the desti-
nation address; if the rule does not exist discard the packet and stop

5. if the two matching rules (input and output) have both negative direction, discard
the packet and stop. This is the case of a packet coming from the parent node
but not directed to the node’s sub-tree

6. if the input routing rule’s direction and the packet’s direction (“D” packet’s field)
are the same, discard the packet and stop. This is the case of a packet that would
be retransmitted towards the same direction it came from

7. at this point the packet is considered accepted for processing by the node, to be
further routed or accepted locally

8. if the packet has the “TRACE” code, possibly update the packet’s payload with
the node’s tracing information (see Sec. 2.6.5)

9. if the interface specified by the output routing rule is 0 (local destination), accept
the packet locally (go to (10)); else:

(a) set the packet’s direction (“D” field) to the direction specified by the output
routing rule

(b) if the packet has negative direction and its hop number is greater than 0,
decrement its hop number

(c) if the packet has positive direction, increment its hop number
(d) transmit the packet through the interface specified by the output routing rule

3This kind of packet is used during the initial node configuration (see Sec. 2.4 and Sec. 2.6.3), when
the node has not yet been assigned its own depth. The “depth” field of the packet indicates the depth
in the tree to which the packet is destined, that will also become the node’s depth as a result of the
configuration command.

20

2.6. COMMANDS

(e) stop

10. at this point the packet is considered locally accepted (destined to the node itself)

11. if the packet is destined to the application layer (T=1), and the sequence number
is the same as that of a previous packet from the same node:

(a) if a reply was already sent to the command and it’s stored in memory, send
the same reply again

(b) stop

12. update the information relative to the sequence number of the received packet

13. if the packet is destined to the application layer (T=1), notify it to the upper
layer; else process the packet at the network layer

2.6 Commands
The “CODE” field of a network packet (Sec. 2.2) identifies the command or message
type associated to the packet. Depending on the “T” field in the header, different
meaning is associated to codes in packets destined to the network layer (T=0) or to the
application layer (T=1).

Tab. 2.3 lists all the defined commands. The e, r and n fields indicate fields that
must be present at the beginning of the payload in packets that feature them, their
meaning being:

• e is the error code in case of NACK

• r is the register number to be set or get

• n is the limit on the acceptable reply size

CODE T=0 T=1

000 ACK ACK
001 NACK e NACK e
010 GET r GET r
011 TRACE GET r n
100 MSG MSG
101 PING MSG n
110 SET r SET r
111 CONFIG SET r n

Table 2.3: Command codes.

21

2.6. COMMANDS

In the case of T=0, commands are processed at the network layer and are not notified
to the upper layers.

In the case of T=1, packets are sent to the upper layer. Generally speaking, the
application layer makes no assumption about the meaning of these codes, but the rec-
ommended implementation in this standard for the application layer (see Sec. 4) assigns
a semantics to the command codes, where the user application can be stated in terms of
a register machine, whose registers can be read and written (GET and SET commands),
and may generate messages (MSG command) to alert other nodes of particular events.

This section explains the commands for the network layer, except the GET, SET and
MSG commands, which are described at the application layer (Sec. 4); this is because
their format and meaning are the same, only applied at a different layer. Registers and
messages at the network layer are application-dependent and can be used to configure
parameters pertaining the communication interfaces.

See Sec. 4 for the other application-layer commands (T=1).

2.6.1 ACK Code

Description

Sent in reply to commands that mandate it, to indicate a successful result.

Payload

Optional, application-specific. Null if not specified.

2.6.2 NACK Code

Description

Sent in reply to commands that mandate it, to indicate an error in the processing of the
previous request.

Payload

• Error code (1 byte)

• Optional error-specific additional information

2.6.3 CONFIG Code

Description

Generated by the master node only, to configure nodes during setup of the network.
The CONFIG command can use network packets with “DST + MAC/DEPTH” address-
ing mode, other than the other addressing modes. See Sec. 2.4 for details about the
configuration process.

22

2.6. COMMANDS

Payload

A sequence of 0 or more records, ad shown in Tab. 2.4, representing the entries to be
added, deleted or modified in the routing table of the recipient node.

Interface Length Span Network Address
1 byte 1 byte 2 byte 2 byte

Table 2.4: Records composing the payload of the CONFIG command.

For each entry, the rule type is inferred from the “Length” field. If it’s greater than
or equal to 16, the rule is span-based, otherwise it is mask-based.

For mask-based rules, the “Network Address” and “Length” fields represent the XXXX
and L parts of the rule, and the “Span” field is not present.

For span-based rules, the “Network Address” field is the starting address (XXXX),
and the span extent (YYYY − XXXX) is computed as follows:

• if “Length” is lesser than 255, the extent is Lenght − 16, and the “Span” field is
not present

• otherwise the extent is given in the “Span” field
The “Interface” field is the II field in rule notation, but it can assume special

meanings as explained below.
Before further processing, the routing table is searched for rules equivalent to the

one being examined, and if one or more of such rules exist, they are removed from the
table; “equivalent” has different meanings according to the rule type:

• for mask-based rules, an old rule is equivalent to the new one if the address of
the old rule, logically ANDed with the mask implied by the new rule, equals the
address of the new rule (that is, the subnetwork denoted by the old rule is a subset
of the one in the new rule)

• for span-based rules, an old rule is equivalent to the new one if the address interval
in the old rule is a subset (or the same set) of the new rule

After that, if the “Interface” value is lesser than 0x7F, the new rule is added to the
table, otherwise if it is 0x7F nothing is done, giving the value 0x7F (DEL character in
ASCII) the special role of deleting a rule. Other values are undefined.

It can be seen that, according to the case, a rule can effectively be added, modified
or deleted with proper “CONFIG” commands.

Note that the direction of rules expressed in the “CONFIG” command is always
assumed +1, except when the interface is 0 (not normally used), in which case the
direction is also 0.

Reply

ACK or NACK.

23

2.6. COMMANDS

2.6.4 PING Code

Description

Used to test the network connectivity.

Payload

A sequence of 0–64 arbitrary bytes.

Reply

ACK, with the same payload as the request.

2.6.5 TRACE Code

Description

Generated by the master node only, to test the signal strength and quality of the physical
links forming the network.

A node accepting a packet with TRACE command, either for routing or as the final
recipient, checks that the node depth is greater than or equal to the minimum one
indicated in the payload, and lesser or equal to the limit imposed by the packet size.

If this is the case, the node updates the entry in the payload corresponding to its
depth and to the packet direction with the quality data regarding the reception of the
packet itself. Note that the last node receiving the packet can update the first half of
the record only, corresponding to the “+1” direction.

Whether the node updates or not the payload, it continues the normal processing,
routing the packet to another node or accepting it locally and replying.

This command is therefore special, because a node parses the command, and possibly
modifies its payload, even if it’s not the actual recipient of the packet.

Payload

A 2-byte header, followed by one or more 8-byte records, as shown in Tab. 2.5, where
the last record has only the first 4 bytes.

direction = +1 direction = -1
start depth attempts delay stren. qual. attempts delay stren. qual.

16 bit 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

Table 2.5: Header and records composing the payload of the TRACE command.

TODO: document the 4 parameters.

24

2.7. EXTENDED NETWORK LAYER (MASTER NODE)

Reply

TRACE (with updated payload) or NACK

2.7 Extended Network Layer (Master Node)
This section lists the additional functions that the extended network layer, typically
running on the master node only, must perform for the correct implementation of the
network.

2.7.1 Network Formation

If the tree structure of the network, together with the routing tables of every node, is
not fixed and precomputed, the master node must provide the proper algorithms for the
formation of the network.

In order to do this, the master node needs several input data describing the features
and collocation of every node and the nature of every physical medium involved in the
communication.

First, every node must be represented with the following (non-exhaustive) list of
parameters:

• MAC address

• list of physical interfaces available for communication

• where meaningful (e.g. wireless interfaces), the geographical position of the node
for every interface

• optionally, a user-defined name for the node, to be used in higher-level commands

Then every physical interface, coherently with those listed in the previous list, must
be defined in terms of the following list of parameters, whose meaning can be different
for the various types of interfaces, due to the different nature of the transmission media:

• the “cost” of every hop of the interface, depending on the parameters that the
application needs to optimize more

• the “range” of a given interface, that is a measure of how much the total cost of
a transmission increases with the distance between the nodes; this can be given
in number of hops or in actual distance

• the timing information of data transmission through the interface, in order to
compute the timeouts in case of packet loss

The information on the physical interfaces allows to define a cost function for the
transmission of data through a given interface; this can be used by well-known algorithms
(e.g. Dijkstra’s), to extract an optimal tree from the graph describing the physical
topology. The graph itself is described by the previously listed information on the nodes
and the interfaces.

25

2.7. EXTENDED NETWORK LAYER (MASTER NODE)

2.7.2 Packet Loss

The network must be robust to the likely case of a packet lost or corrupted along one
of the several links needed to reach the recipient node from the source one. This is
easily detected when sending a command that mandates a reply. In this case, both the
command or the reply can be lost.

The standard implementation of the network layer already manages the case of a
duplicated command request (see Sec. 2.5), in a way dependent on the command’s
destination layer.

On the other hand, the master node, which typically is the originator of a request or
command, must handle the case of a reply not received, by defining a timeout interval
after which the packet can be considered lost. The timeout duration must be computed
on the basis of several parameters:

• the timing information of all the links the command and the reply packets must
travel, according to the routing for the destination node and the physical interface
characterization previously explained

• the time needed by the destination node to process the request, depending on the
application

• additional possible latencies, depending on the implementation

After a reply has not been received in the given time, the master node must try to
retransmit the packet, up to a desirable number of times, before reporting an error to
the application.

2.7.3 Sequence Number Generation

As said (see Sec. 2.5), every new packet transmitted must be assigned a suitable sequence
number to distinguish it from the previously transmitted packets.

Given that the possible different numbers are limited, and that a duplicated sequence
number can lead to a node mistakenly interpreting the command as a duplicated one and
generating an incorrect reply4, care must be taken to generate those numbers effectively.

This is specially true for the master node, that generates packets destined to every
other node in the network. In this case the master node must track the sequence numbers
it used for (virtually) every destination address, to avoid the risk of generating the same
number for two consecutive packets to the same node, even after having generated
different numbers for the other transmissions in between.

Given that there can be several thousands nodes in the network, the master node
must necessarily implement optimized techniques to store this kind of information, like
remembering a limited number of the last packets, and freeing their memory when safe.

Generating the sequence number in a proper sequence can also be done with opti-
mized algorithms, in order to minimize the cost of storing the needed information.

4As previously seen, this behavior is implemented for commands pertaining to the application layer
only.

26

Chapter 3

Presentation Layer

27

Chapter 4

Application Layer

This chapter describes a recommended semantics for the commands of the application
layer, that can ensure a better interoperability between different systems, while keeping
the maximum flexibility for the implementation of the specific applications.

Tab. 4.1 lists the command codes associated to packets (“CODE” field), already
described in Sec. 2.6, but here listing only the commands directed to the application
layer (T=1). As for the other cases, the e, r and n fields indicate fields that must be
present at the beginning of the payload in packets that feature them, their meaning
being:

• e is the error code in case of NACK

• r is the register number to be set or get

• n is the limit on the acceptable reply size

CODE T=0 T=1

000 ACK
001 NACK e
010 GET r
011 GET r n
100 MSG
101 MSG n
110 SET r
111 SET r n

Table 4.1: Command codes (application layer only).

The reference implementation organizes the user application in terms of a register
machine, whose registers can be read and written (GET and SET commands), and may

28

4.1. REGISTER ADDRESS FORMAT

bits bytes format
7 1 0bbbbbbb
14 2 10bbbbbb NN
21 3 110bbbbb NN NN
28 4 1110bbbb NN NN NN
35 5 11110bbb NN NN NN NN
42 6 111110bb NN NN NN NN NN
49 7 1111110b NN NN NN NN NN NN
56 8 11111110 NN NN NN NN NN NN NN
64 9 11111111 NN NN NN NN NN NN NN NN

Figure 4.1: Variable-length binary coding of register addresses, showing the available
address bits and the needed coding bytes for every case. Boldface text represents the

register address.

generate messages (MSG command) to alert other nodes of particular events. MSG com-
mands can be generated by any node, and directed to any other node, in asynchronous
way, without explicit request from the master node.

The side-effects of reading or writing a register, or receiving a message, are entirely
application-dependent and represent how the specific user application works.

For the description of the ACK and NACK commands, see the corresponding sections
in the chapter about the network layer (Sec. 2.6).

4.1 Register Address Format
The address of the register to be read or written (r field in the payload of some of the
commands) is represented using a custom integer compressive coding, with a variable
number of bytes (1–9), allowing the coding of up to 264 addresses, but keeping a more
compact notation in case of addresses in a narrower range.

In the simplest case of addresses in the range 0–127, the address is represented
naturally by a single byte; this case is denoted by the most significant bit of the byte set
to 0.

Higher addresses are coded by appending up to 8 additional bytes to the first one,
whose quantity is indicated by the number of most significant bits set to 1 in the first
byte. In this case the first byte may or may not contain some of the most significant
bits of the address, separated by a bit 0 from the bits set to 1 in the most significant
places.

Fig. 4.1 illustrates the binary coding. Bits indicated with ‘b’, or hexadecimal digits
indicated with ‘N’, compose the register address.

29

4.2. COMMANDS

4.2 Commands

4.2.1 GET Code

Description

Reads a register. Available in the two versions “GET r” and “GET r n”.

Payload

• r : register address (1–9 bytes)

• (second version only) n (1 byte): limit on acceptable reply size

Reply

ACK with payload containing the reading result, or NACK.

4.2.2 SET Code

Description

Writes a register. Available in the two versions “SET r” and “SET r n”.

Payload

• r : register address (1–9 bytes)

• (second version only) n (1 byte): limit on acceptable reply size

• optional: data to be written to register

Reply

ACK with application-dependent payload, or NACK.

4.2.3 MSG Code

Description

Notifies an event. Can be sent from/to any node, without explicit request from the
master node. Available in the two versions “MSG” and “MSG n”.

Payload

• (second version only) n (1 byte): limit on acceptable reply size

• optional: data associated to event

30

4.2. COMMANDS

Reply

ACK with application-dependent payload, or NACK.

31

	1 Introduction
	1.1 Network Topology
	1.1.1 Logical Topology (Tree)

	1.2 Network Layer Model
	1.2.1 Physical and Data Link Layer
	1.2.2 Network Layer
	1.2.3 Presentation Layer
	1.2.4 Application Layer

	2 Network Layer
	2.1 Addressing
	2.2 Network Packet
	2.2.1 Addressing modes

	2.3 Routing tables
	2.3.1 Mask-Based Rules
	2.3.2 Span-Based Rules

	2.4 Network Configuration
	2.5 Packet Processing and Routing
	2.5.1 Sequence Numbers and Duplicated Packets
	2.5.2 Packet Processing Algorithm

	2.6 Commands
	2.6.1 ACK Code
	2.6.2 NACK Code
	2.6.3 CONFIG Code
	2.6.4 PING Code
	2.6.5 TRACE Code

	2.7 Extended Network Layer (Master Node)
	2.7.1 Network Formation
	2.7.2 Packet Loss
	2.7.3 Sequence Number Generation

	3 Presentation Layer
	4 Application Layer
	4.1 Register Address Format
	4.2 Commands
	4.2.1 GET Code
	4.2.2 SET Code
	4.2.3 MSG Code

